Real Sociedad Española de Física - RSEF

¿Por qué buscamos el bosón de Higgs?

HiggsEl próximo 4 de julio se espera un importante anuncio por parte del CERN acerca de la búsqueda del bosón de Higgs. Fernando Cornet, catedrático de Física Teórica de la Universidad de Granada, nos ofrece una panorámica del contexto histórico y del camino que se ha recorrido hasta aquí.

El 13 de diciembre del pasado año se celebró en el Laboratorio Europeo de Física de Partículas (CERN), situado en Ginebra, una sesión científica y posterior rueda de prensa en la que se presentaron a científicos expertos y a toda la sociedad los últimos, y muy esperados, resultados en la búsqueda del bosón de Higgs.  En aquel momento dos de los más grandes experimentos que se desarrollan en el CERN, llamados ATLAS y CMS, mostraron una pequeña señal que podría indicar la existencia de esta partícula. Sin embargo, la señal era excesivamente pequeña como para ser incontestable, por lo que la búsqueda debía proseguir. Ahora se anuncia para el día 4 de julio una nueva sesión científica y rueda de prensa en la que se mostrará una actualización de los datos con los resultados de la búsqueda realizada a lo largo del 2012. Pero, ¿qué es el bosón de Higgs? y ¿por qué tanto revuelo para anunciar su posible descubrimiento?

Desde la antigüedad el ser humano se ha preguntado de qué está formada la materia que nos rodea y nosotros mismos. La respuesta a esta pregunta ha ido variando a lo largo del tiempo. En el siglo XIX se pensaba que en última instancia toda la materia se reducía a una serie de átomos de diferentes tipos, indivisibles, que se combinaban entre sí para dar lugar a la gran variedad observada a nuestro alrededor.

Posteriormente, a principios del siglo XX, se descubrió que los átomos no eran indivisibles si no que constaban de protones y neutrones, formando los núcleos de los átomos, y electrones dando vueltas alrededor de los núcleos. Actualmente s sabemos que los protones y neutrones tampoco son indivisibles sino que son distintas combinaciones de unas partículas más pequeñas, llamadas quark “arriba”  y “abajo” (up y down en inglés). De esta forma el protón es una combinación de dos quarks de tipo “arriba” y un quark de tipo “abajo”, mientras que el neutrón es una combinación de dos quarks de tipo “abajo” y uno de tipo “arriba”.

Estos quarks, junto con el electrón, son los últimos constituyentes de la materia que hoy en día consideramos como indivisibles. Pero además hay más partículas a las que no les hemos visto ninguna estructura interna, y por lo tanto consideramos como indivisibles. Hay otros cuatro quarks similares a los ya comentados, haciendo un total de seis quarks y, además, hay seis leptones (el electrón es uno de ellos) que también son indivisibles. Muchas de estas partículas tienen una masa mayor que la de los quarks “arriba” y “abajo” y los electrones, lo que hace que sean partículas muy inestables y se desintegren muy rápidamente por lo que aunque se crearon al principio de la historia del universo, poco después de la Gran Explosión (Big Bang), ahora ya no queda ninguna y solo se producen de forma artificial en los aceleradores de partículas y de forma natural en algunos fenómenos de muy alta energía en objetos astronómicos.

Por otra parte, las interacciones entre quarks y leptones se producen mediante el intercambio de nuevas partículas a las que llamamos de forma genérica bosones intermediarios. Tampoco hemos observado ningún tipo de estructura interna de estas partículas, por lo que también se califican como elementales. Las interacciones relevantes entre las partículas elementales son la Fuerte y la Electrodébil (Interacción unificada de lo que antes era la Interacción Electromagnética y la Débil). La Interacción Gravitatoria entre partículas elementales es extremadamente débil y podemos olvidarnos de ella.

Pues bien, cada una de estas interacciones tiene asociado un conjunto de bosones intermediarios. Los gluones están asociados a la Interacción Fuerte y los fotones y las partículas llamadas W y Z a la Electrodébil. De estas partículas, los gluones y los fotones tienen masa nula, pero los W y Z tienen una masa grande y que hemos medido con mucha precisión en los últimos años.

En los párrafos anteriores ha surgido la palabra clave: la masa. La masa es una propiedad básica de todas las partículas elementales. De hecho es la primera propiedad que los físicos intentamos medir y determinar con la máxima precisión posible. Como hemos dicho, sabemos que muchas de esas partículas tienen masa. La del electrón, por ejemplo,  la conocemos desde hace más de 100 años. Otras las hemos medido en los últimos 20 años. Sin embargo, la teoría que describe las interacciones de los quarks y los leptones a través de los bosones intermediarios exige, en primera instancia, que todas estas partículas carezcan de masa, en abierta contradicción con múltiples medidas experimentales.

Aquí es donde entra en escena Peter Higgs, un físico escocés que encontró una forma sencilla de dotar de masa a todas estas partículas, lo que hoy conocemos como Mecanismo de Higgs. Una consecuencia ineludible de esta forma de dar masa a las partículas elementales es la existencia de una nueva partícula, desconocida hasta el momento a la que se ha dado en llamar bosón de Higgs. Esta es la partícula que andamos buscando desde hace muchos años, porque es la única partícula del llamado Modelo Estándar que no hemos encontrado experimentalmente hasta el momento. Y sin la existencia de esta partícula no entendemos fácilmente las masas que observamos de todas las partículas.

¿Se han acabado ya los largos años de búsqueda? ¿Tenemos ya una clara evidencia de la existencia del bosón de Higgs? Una primera respuesta a estas preguntas la podemos tener el próximo día 4 de julio. De todas formas, y como siempre ocurre en ciencia, nuevas preguntas surgirán. Pero esperemos a ver los resultados que se anunciarán en Ginebra y disfrutemos de ellos antes de empezar a plantearnos nuevas preguntas.

Fernando Cornet es catedrático de Física Teórica del Centro Andaluz de Física de Partículas (CAFPE), Universidad de Granada.
Artículo realizado para el medio lainformacion.com
Valora este artículo
(0 votos)
volver arriba

 

  • El verdadero valor de un hombre se determina examinando en qué medida y en qué sentido ha logrado liberarse del yo.

    Albert Einstein (1879-1955)
  • La unidad es la variedad, y la variedad en la unidad es la ley suprema del universo.

    Isaac Newton (1642-1727)